
Malaria surveillance with multiple data sources
using Gaussian process models

Martin Mubangizi∗, Ricardo Andrade-Pacheco†, Michael Smith∗, John A. Quinn∗‡ and Neil Lawrence†
∗Makerere University, Kampala, Uganda

{mmubangizi,msmith,jquinn}@cit.ac.ug
†University of Sheffield, UK

{acq11ra,N.Lawrence}@sheffield.ac.uk
‡UN Global Pulse, Kampala, Uganda

Abstract—A statistical framework for monitoring the health
of a population should ideally be able to combine data from
a wide variety of sources, such as remote sensing, telecoms,
and official health records, in a principled manner. Gaussian
process regression is commonly used to visualise disease incidence
by interpolating values across a map; in this article, we show
how it can be extended to deal with many different types of
information by introducing a flexible covariance structure across
data sources. Combining many data sources in a single model
provides a number of practical advantages, such as the ability to
to automatically determine the importance of each data source
through likelihood optimisation, and to deal with missing values.
We show the basic idea with an application of malaria density
modeling across Uganda using administrative records and remote
sensing vegetation index data, and then go on to describe further
extensions such as the incorporation of human mobility data
extracted from mobile phone call detail records (CDRs).

I. INTRODUCTION

Malaria remains endemic across much of the world, in spite
of mitigation measures by both governments and international
agencies. Health department intervention is now principally
response-driven; at those times and locations with the greatest
malaria infection rates the provision of treatment needs to be
able to match the number of cases without stock-outs or staff-
shortages. Hence planning stock and staff deployment depends
on accurate and timely information regarding the distribution
of malaria cases. In Uganda, the Ministry of Health receives
weekly counts of reported malaria cases from all districts.
However, this data is compromised by cases of non-reporting at
both the district and health center levels [1], the cases reported
are often based on unverified diagnoses, and there are various
other sources of measurement error.

In order to resolve ambiguity about how the disease burden
is distributed, models can be constructed which relate infection
levels across time and space, or incorporate covariates which
provide extra information. These covariates may be envi-
ronmental (rainfall levels, temperature, vegetation strength)
or social (population density, migration/movement patterns,
demographics), for example. In this regard, NDVI index, which
is widely used to estimate vegetation density [2], turns out to be
good proxy for rainfall [3] and has proved useful in identifying
suitable habitats for mosquito breeding [4].

Any attempt to use remote sensing data, such as NDVI,
for carrying out inference on administrative records, will face
the problem of trying to mix two data sources with differing

space and time resolutions. For example, while HMIS data is
reported weekly and aggregated at a district levelf, NDVI is
provided a much higher resolution in a grid and is reported
every 5 days.

Gaussian process regression is commonly used in epi-
demiology to interpolate disease counts across space. In this
paper, we explain how it can be extended to a coregionalised
form in order to incorporate information from covariates. By
specifying a covariance structure relating a number of inputs
and outputs, it is possible to combine several different types
of data in a single, principled framework. We illustrate this
model using weekly counts of malaria incidence by district in
Uganda, and show that for certain regions, the incorporation of
environmental remote sensing data can significantly improve
the estimates of the infection rate compared to baseline models.
We then describe how social data can be incorporated, in
particular information about movements of the population
derived from mobile phone call detail records.

This paper is organised as follows. Section II discusses
some of the related work; Section III presents the data used
and introduces the model framework. Application of the model
to environmental covariates is discussed in IV, and Section V
discusses use of mobility data. We conclude, with suggestions
for future work, in Section VI.

II. RELATED WORK

The need to use data from multiple sources to enhance
disease modeling has been an active research area [5], [6]. [7]
cites challenges that this research has been faced with. This
also led to search for new data sources that may provide signals
of changes in disease rates, including absenteeism [8], sales
of over-the-counter health products [9], emergency call centers
[10], and automatic malaria diagnosis results [11]. Examples of
research that has focused on using multiple data sources, such
as [6], acknowledge the need for data from multiple sources in
biosurveillance. BioPHusion [5], for instance, is a framework
that can use real time data from several sources for awareness
and timely response.

It is widely understood that determining the geographical
distribution of a disease is vital in its control [12] and in esti-
mating the cost of that control [13]. To this end, considerable
effort has gone into producing risk maps of diseases at different

fHMIS data might be available at smaller aggregation levels, however the
information available to the authors had a district aggregation.
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spatial scales—by country [14], continent [15] and at global
[12], [16] scale. These example risk-maps are over a long
time-scale however, looking at seasonal averages. The methods
we propose offer predictions of disease counts at a weekly
time-scale, allowing more detailed and precise estimates for
operational use. One feature these studies have in common is
the use of remote sensing for disease prediction; we use this
same idea but at a much shorter time-scale.

The use of mobile phone CDRs for modelling the effects
of human mobility on the distribution of malaria infection is
also gaining traction in the literature (for example see [17] for
a review, but also see [18] for issues around this data).

Gaussian process regression in epidemiology

Gaussian Process Regression, or Kriging models, were first
introduced in the 1960s for geostatistics, and since then the
method however has had application across many disciplines.
In brief, the method works by estimating the correlation
structure of the data (over time, space or other dimension of
interest) then using these estimates of correlation the values
of the output can be estimated from training data. This basic
regression can be extended to combine multiple output vari-
ables, by estimating their coregionalised correlations. Further,
the uncertainty and absence of data can be incorporated,
allowing our confidence in each data point to be taken into
account. Finally the output also includes confidence intervals,
giving important information about the reliability of each of
the model’s estimates. The use of Kriging in public health
datasets is commonly used to interpolate disease incidence
across space. For example, Kleinschmidt et al. [19] applied
this method to malaria mapping.

III. DATA AND METHODS

A. Data

a) Uganda Health Management Information System
(HMIS): HMIS, hosted at the Ministry of Health in Uganda,
manages countrywide reported cases of diseases of public
health importance including malaria. HMIS receives weekly
counts of reported malaria cases from health centers aggre-
gated at district level. For each week, the number of cases
in each district is reported, with an associated statistic on the
proportion of health centres which were included. Often the
number reporting is low, causing degradation in the quality of
the data, to the point where, unprocessed, the data is of little
use [1].

b) Population estimates: This data was obtained from
World Pope, which provides estimates of the number of people
living in 100m square grid cells across the entire country.

c) Normalised Differenced Vegetation Index (NDVI):
NDVI gives a measure of how vigorous the vegetation is
across space. In this study we use vegetation index data from
eMODIS obtained from the Famine Early Warning System of
the United States Geological Survey (USGS FEWS)d. This
data was obtained at a spatial resolution of 250m, every five
days. To reduce the computational complexity and make the

ehttp://www.worldpop.org.uk/data
dhttp://earlywarning.usgs.gov/fews/

remote sensing data more representative, a population-density-
weighted average of the remote sensing data was calculated for
each district.

B. Methods

A Gaussian process (GP) regression is a machine learning
algorithm for relating an output y (e.g. disease incidence)
with a set of inputs X (e.g. longitude and latitude). The core
assumption of this mathematical model is that there is an
unobserved or latent variable f that depends on X, but for
which we only have access through its distorted version y.
This unobserved variable is a Gaussian process with some
mean µ and covariance Σ which depend on the inputs [20].
The distortion is given by independent random noise at each
observation.

It is possible to extend GP regression to deal with many
outputs, rather than just one [21]. Broadly speaking, this
approach consist of defining a multiple output kernel functions
able to incorporate information from different outputs and
use it to model the correlation between them. Here we are
interested in showing through an application how these kind
of models can be used for integrating different sources of
information for malaria modelling.

Assume we have d sets of outputs and inputs
{y1,X1}, . . . , {yd,Xd}, where all Xj belong to the same
domain. The number of observations in each set can be
different and the domains of the outputs do not have to be the
same. A first approach for learning all these tasks could be to
model each with a separate GP. However if we know that the
outputs might be correlated we could also try to model them
together. This way, information from one domain can constrain
the values in another.

The mathematical formulation for such coregionalised
models is broadly the same as for standard, single-output GP
regression. We use the same pairing of outputs and inputs from
the d original sets,

y =




y1

...
yp


 and X =




X1

...
Xp


 .

The covariance matrix is defined in a block structure, where
each block contains the weighted cross-correlation. Thus, given
a kernel matrix K and a matrix of weights B, the multiple
output kernel MK is defined as

MK =B⊗K(X,X)

=




B1,1 ·K(X1,X1) . . . B1,d ·K(X1,Xd)
...

. . .
...

Bd,1 ·K(Xd,X1) . . . Bd,d ·K(Xd,Xd)


 .

(1)

Complex covariance structures can be defined by constructing
K from other kernels [22] or by using a linear combination of
multiple output kernels, thus defining

MK =

R�

r=1

Br ⊗Kr(X,X). (2)
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IV. APPLICATION

A. Temporal Modeling

As mentioned earlier, malaria models can be improved by
considering covariates such as NDVI index. Here we show an
example for modelling both variables across time. For this task,
vector autoregressive models or a general linear model might
be considered as a first option for studying the relation between
this two variables. However these models require the input and
output variables to be sampled at regular and equal time and
space intervals. This is usually resolved by the interpolation of
one of the variables. One of the advantages of coregionalised
GP regression is this step is not required, and the uncertainty
in an interpolated value is already incorporated into the result.

For each district, we trained single GP regression model
for malaria incidence and a joint model with NDVI. Then we
predicted malaria incidence 180 days ahead. In the first model,
the prediction only depended on past observation of the same
variable. In the second model the prediction was aided by the
training observations of NDVI which overlaped the period of
malaria prediction.

Figure 1 shows a comparison of a single GP regression
model of malaria incidence with a joint model with NDVI
information. It can be clearly seen that HMIS and NDVI are
strongly correlated (values are standardized in the figure), and
that the joint model performs better at predicting values from
the test set.
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Fig. 1. Malaria incidence in Napak. The image above shows a the predictions
using an independent model. The image below shows the predictions using
a joint model. Training and test points are shown in gray and green circles.
Predictive mean and confidence intervals are shown in solid blue lines. NDVI
data is shown in red.

The similarity between malaria incidence and NDVI does
not generalise across all districts. To identify those districts
where there seems to be a stronger relation between these two

variables we used the the quantity

β =
B1,2�
B1,1B2,2

, (3)

where Bi,j are the entries of B (the coregionalisation matrix).
Despite the similarity in the equation (3) with the definition of
correlatin between two variables, it is worth highlighting that
we are not giving β1,2 the same interpretation.

We found that the mean squared errors (MSE) of the
coregionalised model tend to be smaller than the ones from
the single model, in districts with larger values of β. Figure 2
shows the ratio of MSE between the models for districts with
β > 0.
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Fig. 2. MSEs vs cross covariance influence. The line shows the total MSEs
of all districts with a value equal or larger than β (cross covariance influence).

Intuitively, the joint model should be as good as the single
model, as in the worst scenario, where no correlation is found,
B would be the identity and therefore we would be assuming
independence. There are however a few reasons why this
intuition is not totally right and, as shown in figure 1, where
we can expect the joint model to have a poor performance.

First of all, model that uses a kernel like the one in (1), but
where B is the identity, is not entirely independent. Although
correlation across outputs is zero, by learning the parameters of
K with information of both outputs we are forcing the model
to share information. If both variables are different, models
where the kernel parameters are learnt separately can be better.
By using a kernel defined as in 2 we can create a covariance
structure where a covariance structure of the joint model, leads
to actual independent individual covariance structures, where
the kernel parameters are not shared.

Another case where the joint model can perform poorly is
when outputs are not correlated, but still there are spurious
correlations. In such situation, we would only be learning and
sharing noise across outputs. This can be originated by the
fact that two variables behave similar in for some period or
because one of the variables has scarse observations that almost
all learning depends on the observations of the other variable.
In our experiments, we found that in district Kole β ≈ 1, while
there seems to be no relation between this two variables.

A computational problem that may arise due the number
of elements in B increases quadratically with respect to the
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Fig. 3. Map of Ugandan districts, those with grey background have β ≤ 0.3,
while those with white background have β > 0.3. Points in each district have
been drawn at the weighted centroid that used population as a weight.

number of outputs. Because GPs are an inference method that
relies on gradient optimization, when number of parameters is
large, the contribution of each one to the objective function
can become negligible for some initializations.

B. Spatial Modeling

The GP coregionalised model can also help in combining
HMIS data with satellite environment covariates (such as
topology, NDVI, land surface temperature, land cover and land
Use data) to produce a continuous surface of malaria disease
risk. Here HMIS and the covariates can be treated as outputs of
the model. The inputs of HMIS we can associate with reporting
locations if known, but if not available then a population-
weighted centroid (such as in Figure 4) can be calculated and
used. The inputs of the environmental covariates will be the
locations at which their values will be sampled, in this case
also population can be used if its distribution is known. Since
the model can exploit correlation across different outputs in
space, the HMIS values will be smoothed out to generate a
risk surface.

V. TELECOMS-DERIVED HUMAN MOBILITY DATA

Early models of epidemiology considered disease disper-
sion to depend on geographical proximity of places, or on
simple gravity models of human movement, although move-
ment patterns can be complex and significantly affect the
distribution of infectious diseases [23]. Population mobility
can be obtained from CDRs for example by simply counting,
for each time frame, how many people moved between each
pair of cell towers on a telecoms network. Thus when a single
user makes or receives a call routed through cell tower i, then
later makes or receives a call routed through cell tower j, we
increment the count of i → j movements. This results in a
transition matrix TCDR, whose entries denote the fraction of
people moving from one location to another.

Fig. 4. Calculated positions of population-weighted district centroids.

This information, originally recorded by each tower, can
be aggregated at different areas (e.g. districts), to show the
average movement between them. This gives an idea of the
proximity between regions that can be more informative than
the actual distance between regions for analyzing infectious
diseases.

Since malaria is not transmitted directly between humans,
but need a mosquito as intermediary, the measure of proximity
we need goes beyond human mobility. For each individual that
travels from one region to another, we also need to incorporate
information about infection rate in the region of origin and
probability of infection the destiny region. As proxies of both
quantities we can use the parasite rate and reproductive number
from [12]. Finally, we should weight the movements across
regions by the population en each one. Thus we can think of
a transition matrix, whose elements are defined as

T (i, j) = TCDR(i, j) · P (i) ·RC(j) · PR(i) . (4)

Due to the lack of up to date census information in Uganda,
we use values calculated from the population estimation of
2010 worldpopg.

With this transiton matrix, we can modify the distances
between regions given by their centroids to include mobility
information. Figure 5 shows how we shift the centroid of each
district towards those that have more access to it, based on
daily movements. We can use the coordinates of this new space
as the inputs in a GP and then apply the methods we have
discussed so far.

VI. CONCLUSION

We have presented coregionalised Gaussian process regres-
sion as a method that can support both spatial and temporal
modeling of disease incidence using a range of different types
of data. Whereas standard GP regression, or Kriging, is a well-
established method in epidemiology in general and malaria
surveillance in particular, this model provides the ability to

ghttp://www.worldpop.org.uk/data
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Fig. 5. Space generated by telecom data. The points correspond to the district
centroids. The arrows show how each centroid is offset towards those that are
closer to it in terms of the telecom data.

augment the basic regression with other data types that might
be informative. In turn, while the coregionalised method has
been used successfully in a number of other domains where
fusion of data of different types is necessary, it has not
previously been proposed in epidemiology. Using data from
Uganda, we have illustrated the operation of this type of
model and the types of inference it can support with remote
sensing and telecoms data. We are currently collecting a more
extensive dataset in order to evaluate the predictive power of
these models against alternative models.
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